Low Energy Quantum System Simulation

نویسنده

  • Peter Cho
چکیده

A numerical method for solving Schrödinger’s equation based upon a Baker-CampbellHausdorff (BCH) expansion of the time evolution operator is presented herein. The technique manifestly preserves wavefunction norm, and it can be applied to problems in any number of spatial dimensions. We also identify a particular dimensionless ratio of potential to kinetic energies as a key coupling constant. This coupling establishes characteristic length and time scales for a large class of low energy quantum states, and it guides the choice of step sizes in numerical work. Using the BCH method in conjunction with an imaginary time rotation, we compute low energy eigenstates for several quantum systems coupled to non-trivial background potentials. The approach is subsequently applied to the study of 1D propagating wave packets and 2D bound state time development. Failures of classical expectations uncovered by simulations of these simple systems help develop quantum intuition. Finally, we investigate the response of a Superconducting Quantum Interference Device (SQUID) to a time dependent potential. We discuss how to engineer the potential’s energy and time scales so that the SQUID acts as a quantum NOT gate. The notional simulation we present for this gate provides useful insight into the design of one candidate building block for a quantum computer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Effects of on-center impurity on energy levels of low-lying states in concentric double quantum rings

In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of         on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...

متن کامل

Effects of on-center impurity on energy levels of low-lying states in concentric double quantum rings

In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of         on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...

متن کامل

A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003